
py-generic-project Documentation
Release 1.2.dev0

JÃ¼rgen Hermann

2021-07-16

Contents

1 Features 3

2 Documentation Contents 5
2.1 Using the “py-generic-project” Template . 5

2.1.1 Preparations . 5
2.1.2 Project Creation . 5
2.1.3 Requirements Handling . 6
2.1.4 Feature Toggles . 6

2.2 Packaging Python Software . 6
2.2.1 Packaging PyPI Releases . 8

2.2.1.1 Building with setuptools . 8
2.2.1.2 Packaging with wheel . 8
2.2.1.3 Uploading with twine . 8

2.2.2 Building Zipapps (PEP 441) . 9
2.2.3 Packaging Python EXecutables (PEX) . 9

2.3 Installing Python Software . 10
2.3.1 TL;DR . 10
2.3.2 Installing Python . 10

2.3.2.1 POSIX (Linux, BSD, . . .) . 11
2.3.2.2 Windows (python.org) . 11
2.3.2.3 Enabling Easy Zipapp Installs on Windows . 11
2.3.2.4 Conda (Windows, Mac OS X, Linux) . 12
2.3.2.5 RyRun (Mac OS X, Linux, FreeBSD) . 12
2.3.2.6 pyenv (Simple Python Version Management) . 12

2.3.3 Installation With PEX . 12
2.3.4 Installing Releases From PyPI . 12
2.3.5 Installing Directly From GitHub . 13

2.4 Writing Sphinx Documentation . 14
2.4.1 Overview . 14

2.4.1.1 When to Use Sphinx? . 14
2.4.1.2 Feature Highlights . 14

2.4.2 Introduction & Cheatsheets . 15
2.4.3 Extensions & Tools . 15
2.4.4 How-Tos . 15

2.4.4.1 Sphinx Installation and Setup . 15
2.4.4.2 Creating a Minimal Project . 16

i

2.4.4.3 Adding a New Chapter . 16
2.4.4.4 Publishing Your Document . 16
2.4.4.5 Automatic Preview . 17
2.4.4.6 Converting from Markdown to reST . 17
2.4.4.7 Adding a Custom Pygments Lexer to Sphinx . 17
2.4.4.8 Automatic Click CLI References . 17
2.4.4.9 Automatic Click Manual Pages . 18

2.5 Software License . 19
2.5.1 The MIT License (MIT) . 19
2.5.2 CC0 1.0 Universal . 19

3 References 21
3.1 Tools . 21
3.2 Packages . 21

4 Indices and Tables 23

ii

py-generic-project Documentation, Release 1.2.dev0

This is a Cookiecutter template that creates a basic Python Setuptools project, which can be later on augmented with
various optional accessories. See the demo for getting a 1 impression on how this Cookiecutter template can be used,
including screenshots of the terminal session.

If you have questions or need any other kind of help, please join the springerle-users Google group.

Contents 1

https://github.com/Springerle/py-generic-project/tree/master/demo
https://groups.google.com/forum/#!forum/springerle-users

py-generic-project Documentation, Release 1.2.dev0

2 Contents

CHAPTER 1

Features

The resulting project uses rituals and invoke for task automation, and setuptools for building and distributing
the project. A provided autoenv script takes care of creating a fully boot-strapped Python 3 venv or Python 2
virtualenv – it can also be called manually if you don’t want to install autoenv.

The setup.py script follows the DRY principle and tries to minimize repetition of project metadata by loading it
from other places (like the package’s __init__.py). Incidently, this makes the script almost identical between
different projects, and thus provides an easy update experience later on. Usually, the only specific thing in it is the
docstring with the project’s name and license notice. This relies on conventions, especially check out __init__.py and
__main__.py in the src folder, for their double-underscore meta variables.

It is also importable (by using the usual if __name__ == '__main__' idiom), and exposes the project’s setup
data in a project dict. This allows other tools to exploit the contained data assembling code, and again supports
the DRY principle. The rituals package uses that to provide Invoke tasks that work for any project, based on its
project metadata.

Other integrated tools are pylint for code quality checking, pytest for testing support, and a Travis CI configura-
tion.

3

https://jhermann.github.io/rituals
https://github.com/pyinvoke/invoke/
https://bitbucket.org/pypa/setuptools
https://github.com/kennethreitz/autoenv
https://github.com/Springerle/py-generic-project/blob/master/%7B%7Bcookiecutter.repo_name%7D%7D/src/%7B%7Bcookiecutter.pkg_name%7D%7D/__init__.py
https://github.com/Springerle/py-generic-project/blob/master/%7B%7Bcookiecutter.repo_name%7D%7D/src/%7B%7Bcookiecutter.pkg_name%7D%7D/__main__.py

py-generic-project Documentation, Release 1.2.dev0

4 Chapter 1. Features

CHAPTER 2

Documentation Contents

2.1 Using the “py-generic-project” Template

2.1.1 Preparations

In case you don’t have the cookiecutter command line tool yet, here’s how to install it.

For py-generic-project v1.2 and upwards, you need at least cookiecutter v1.1, or v1.0 with degraded
functionality – for pipsi installs, just issue a pipsi upgrade cookiecutter command and you’re done.

2.1.2 Project Creation

Creating a new Python project based on this template goes like this (make sure you’re in the directory you want your
project added to):

cookiecutter "https://github.com/Springerle/py-generic-project.git"

It’s advisable to git add the created directory directly afterwards, before any generated files are added, that you
don’t want to have in your repository.

Note: To get your defaults for common template values cookiecutter will ask you for when you use a template,
it makes sense to have a ~/.cookiecutterrc in your home directory. Follow the link to see an example.

Also, you should at least check these files regarding their content and adapt them according to your needs:

• project.d/classifiers.txt – Add the correct categories (a/k/a Trove classifiers) for your project.

• requirements.txt – Add any Python packages you need for your project at runtime.

To bootstrap the project (as mentioned, best after git add), use these commands from within its directory:

5

https://github.com/Springerle/springerle.github.io#installing-the-cookiecutter-cli
https://github.com/jhermann/ruby-slippers/blob/master/home/.cookiecutterrc
http://pypi.python.org/pypi?:action=list_classifiers

py-generic-project Documentation, Release 1.2.dev0

. .env --yes --develop
inv ci | less -R
python -m $(./setup.py --name | tr -- - _) --help

On Windows, please install Babun to be able to use the same procedures as on a POSIX system – the installation
process is easy and painless.

2.1.3 Requirements Handling

There are three files that define a project’s dependencies: dev-requirements.txt, test-requirements.
txt, and requirements.txt. The first lists tools that you typically need as a developer to work on the project.
It also includes the other two, so one call to pip install -r dev-requirements.txt installs all of the
project’s dependencies for developer use.

tox uses only the test and install requirements in the virtualenvs it creates, because the tools aren’t needed there (or if
they are, they belong to the test ones).

setup.py loads these files into the install_requires and tests_require parameters as far as possi-
ble. Special lines like -e ... and similar are skipped, because only pip supports them; the idea here is to
have none of those left at the time of a release. Note that pytest is always added to the test requirements, since
the setup.py test sub-command is mapped to use pytest as the test runner. There is also an optional file
setup-requirements.txt loaded into setup_requires, in case you need to use some setuptools exten-
sion. If you add that file, you should also include a matching -r setup-requirements.txt line at the end of
dev-requirements.txt.

2.1.4 Feature Toggles

This template has a few options that can be turned on and off even after initial creation, which the following terminal
session demonstrates for Travis CI support.

At the moment of this writing, those feature are travis, flake8, and cli. See the features value in
cookiecutter.json for a current list.

Note that since the whole template is re-created, you should make sure that you have no pending changes in your
working directory, i.e. everything is either safely committed or stashed away. After changing project.d/
cookiecutter.json and the call to invoke moar-cookies, you should look at the diff, and git add
any files that can just be updated (e.g. typically .travis.yml, setup.py, and some others).

Files with considerable changes you have to merge manually, e.g. by dumping a diff, resetting the affected files,
reducing the diffs to the changes you really want, and then applying the edited diff. Note that the easiest way to do
such a reset to the last commit is calling git stash && git stash drop.

Another option is to work with two directories, i.e. clone a copy of your project for the update process, perform the
update, and then selectively copy changes to your main working directory. There might be a more stream-lined way
applying some git magic, we’ll see (ideas are welcome). Still this is better than wading through commit logs to catch
up with an evolving template.

2.2 Packaging Python Software

This is a how-to for developers with directions on packaging their software in ways that enable a painless installation
experience for end-users. Installing Python Software is the related end-user guide.

See also these other resources on the web. . .

6 Chapter 2. Documentation Contents

installing.rst

py-generic-project Documentation, Release 1.2.dev0

Fig. 1: Demo Terminal Session

2.2. Packaging Python Software 7

py-generic-project Documentation, Release 1.2.dev0

• The Python Packaging User Guide

• The Hitchhiker’s Guide to Python!

• The Sheer Joy of Packaging! – A Scipy 2018 tutorial, also covering Conda

The following figure gives a rough outline of what tools are involved in the development workflow. Regard services
like GitLab and Artifactory as representatives, you can equally well use any git server solution and e.g. devpi as your
artifact repository. There are also public services like GitHub, Travis, PyPI, and BinTray that can fill these roles for
open-source projects.

Fig. 2: Overview of Python Development Workflows

2.2.1 Packaging PyPI Releases

This is a short summary of essentals, consult the above resources for all the details. It covers the ‘classic’ tool-chain,
there are more ‘modern’ tools like poetry and flit that serve similar purposes.

2.2.1.1 Building with setuptools

TODO

2.2.1.2 Packaging with wheel

TODO

2.2.1.3 Uploading with twine

Once you have your deployment artifacts ready (typically in a dist folder), you can upload them to pypi.org, or
a local repository service.

There is a dedicated tool named twine for this. It supports using SSL for transfers, and also allows you to first build
your artifacts, then test them as you see fit, and finally upload the tested artifacts.

8 Chapter 2. Documentation Contents

https://packaging.python.org/
http://docs.python-guide.org/
https://python-packaging-tutorial.readthedocs.io/en/latest/
https://github.com/pypa/twine#readme

py-generic-project Documentation, Release 1.2.dev0

Configuration is taken from ~/.pypirc, or the environment – especially useful for CI jobs. A typical configuration
might look like this:

[distutils]
index-servers = local pypi

[local]
repository: https://artifactory.local/artifactory/api/pypi/pypi-releases-local
username: «USER»
password: «API_TOKEN»

[pypi]
repository: https://pypi.org/pypi
username: «PYPI_USER»
password: «PYPI_PWD»

You can select from the list of index servers by using twine upload -r «repo» ..., the default is pypi.

2.2.2 Building Zipapps (PEP 441)

Running Python code directly from ZIP archives is nothing new, PEP 273 made its debut in 2001, as part of Python
2.3 in the form of the zipimport module..

PEP 441 builds on this and describes mechanisms to bundle full applications into a single ZIP file that can be made
executable. It was approved in 2015 and a first implementation appeared in Python 3.5 via the zipapp module.

See the PEP for details on how making a ZIP into an executable file works, but basically on POSIX systems the Python
interpreter is called in a ‘bang path’ that is followed by the ZIP archive. The interpreter recognizes the ‘script’ is a
whole application archive and acts accordingly. On Windows, zipapps MUST carry the .pyz extension which is
bound to the py wrapper command, which in turn looks at the bang path and calls a matching Python interpreter from
the installed set.

To display the bang path of a zipapp, use this command:

python3 -m zipapp --info foo.pyz

If you want to change the requested Python version to a newer one that is actually installed, change the bang path as
part of the installation process:

python3 -m zipapp -p '/usr/bin/env python3.5' -o ~/bin/foo foo.pyz

This can also be done on an ad-hoc basis, by explicitly calling the desired interpreter:

python3.5 foo.pyz ... # POSIX
py -3.5 foo.pyz ... # Windows

Well-known tools to build new zipapps, outside of the Python core, are pex (Twitter) and shiv (LinkedIn). See their
documentation for details on bundling your own applications, and also the next section on PEX.

2.2.3 Packaging Python EXecutables (PEX)

PEX files are Python Executable ZIP files, a format that contains a full distribution of a Python application in a single
archive (just like exectable JARs for Java). PEX files can be targeted at a specific platform and Python version, but
might also support multiple runtime environments. See Installation With PEX for details on how to use them, and PEP
441 for a formal description of the underlying mechanics and all the details.

2.2. Packaging Python Software 9

https://www.python.org/dev/peps/pep-0273/
https://www.python.org/dev/peps/pep-0441/
https://github.com/pantsbuild/pex
https://github.com/linkedin/shiv
https://youtu.be/NmpnGhRwsu0
https://www.python.org/dev/peps/pep-0441/
https://www.python.org/dev/peps/pep-0441/

py-generic-project Documentation, Release 1.2.dev0

The Rituals task library for Invoke offers a release.pex task that performs all the necessary steps to create a PEX
file. If you want to do it ‘manually’ or integrate it into another task runner, this is a concrete example:

pex -r requirements.txt . -c nanny \
-o bin/nanny-0.1.0.dev5-cp27-none-linux_x86_64.pex

At the time of this writing, you need to install pex 1.0.dev directly from GitHub for the above to work.

2.3 Installing Python Software

This is a guide for end-users on how to easily install Python software on the major platforms. See Packaging Python
Software for the related developer guide with distribution methods that enable this mostly painless installation experi-
ence.

2.3.1 TL;DR

This is a no-frills version of basic installation procedures for the three major PC platforms. Read the other sections
for more details, especially if you encounter any problems with these condensed instructions. Once the basic setup is
done, refer to either Installing Releases From PyPI or Installing Directly From GitHub to get an application installed
– and in case the project author provides a Python Executable archive, prefer an Installation With PEX.

On Linux, make sure you have the right version of Python pre-installed, and the basic developer toolset available. On
Debian-like systems, the following makes sure of that:

sudo apt-get install python3 python3-setuptools python3-pkg-resources \
python3-pip python3-dev libffi-dev build-essential git

On Mac OS X, install a modern Python tool chain and missing GNU utilities that are often needed by helper scripts:

sudo easy_install pip && sudo pip install virtualenv
brew install coreutils

For Windows, see the Windows (python.org) section. Developers and ‘power users’ with some existing Python and
Linux experience might consider using Windows Subsystem for Linux (WSL), but that is outside the scope of this
documentation. However, the POSIX workflows should work there.

Note: Keep in mind that the next step after the basic setup is either Installing Releases From PyPI or Installing
Directly From GitHub. And that basic setup needs to be done only once.

2.3.2 Installing Python

There are different ways to get a working Python installation, depending on your computer’s operating system. Note
that Python 2.7 is by now increasingly unsupported, and Python 3.6 or above is the recommended version to use.

Read the documentation of any software you want to install regarding the versions of Python that particular software
runs on, and act accordingly by e.g. calling python3 -m venv instead of just virtualenv.

See also these other resources on the web. . .

• Picking an Interpreter

10 Chapter 2. Documentation Contents

https://jhermann.github.io/rituals
http://www.pyinvoke.org/
https://github.com/pantsbuild/pex
https://docs.microsoft.com/en-us/windows/wsl/faq
http://docs.python-guide.org/en/latest/starting/which-python/

py-generic-project Documentation, Release 1.2.dev0

2.3.2.1 POSIX (Linux, BSD, . . .)

On POSIX systems, use whatever package manager your distribution offers, and as the minimum install Python itself
and everything to manage Python virtual environments. Usually, the Python interpreter is already installed, but some
of the essential extensions and tools might be missing. For Debian-like systems, you need:

sudo apt-get install python3 python3-setuptools python3-pkg-resources python3-pip

If you need the same Python version on the stable and oldstable releases of Debian and Ubuntu, Ubuntu’s Deadsnakes
PPA is a means to achieve that. Python 3.6 is available from the PPA for Xenial (and Bionic comes with 3.6 by default),
and you can also build the deadsnakes packages on Debian (3.6 builds on both Stretch and Buster).

Installing Extension Packages

To successfully install C extension packages like lxml from source into a virtual environment, you also need the
necessary build tools like gcc or clang. On Debian-like systems, this means:

apt-get install python3-dev libffi-dev build-essential git

While the wheel format for binary distributions can make this unneccessary, there are practical limitations: wheels
have to be built and uploaded to PyPI, which is seldom the case for every combination of packages and platforms.
Also, wheels are not yet fully supported for POSIX at the time of this writing, so sometimes you have to install from
source even if there is a pre-built wheel.

2.3.2.2 Windows (python.org)

To get the official python.org distribution on Windows, open the Python Releases for Windows page and select the
appropriate version. You might want to install several Python 3 versions, to cover all possible needs of any applications
– having them on one machine concurrently is no problem. Another officially supported way to get Python is the
Windows Store, but at the time of this writing that is limited to Python 3.7+ and has no x86 support (for 32 bit
architectures).

It’s also recommended to install the Python Extensions for Windows, because many applications rely on them to access
Windows-specific features.

Also note that where on a POSIX system python3 ... is used, that translates to py -3 ... on Windows.

2.3.2.3 Enabling Easy Zipapp Installs on Windows

Zipapps are a way to distribute Python applications and all of their dependencies in a single binary file, comparable to
statically linked golang apps. Their main advantage is that distributing and installing them is quite simple. To learn
more about zipapps, refer to Building Zipapps (PEP 441).

On Windows, because there is no ‘+x’ flag, things are a bit more complicated than on POSIX. Zipapps MUST have
a .pyz extension, for which the py launcher is registered as the default application. The net effect is that such files
become executable and are handed over to the launcher if you add a few environment settings to your machine.

In the user-specific environment settings, add a new PATHEXT variable (or extend an existing one), with the value
%PATHEXT%;.PYZ. Also edit the PATH one and add a new %LOCALAPPDATA%\bin entry. Save everything (click
“OK”), open a new command window, and verify the changes with

echo %PATHEXT% & echo %PATH%

Create the new bin directory by calling md %LOCALAPPDATA%\bin. Now you can place a zipapp file like foo.
pyz in that directory, and it is immediately callable as foo.

2.3. Installing Python Software 11

https://launchpad.net/~deadsnakes/+archive/ubuntu/ppa
https://launchpad.net/~deadsnakes/+archive/ubuntu/ppa
https://github.com/jhermann/ezpy/tree/master/deadsnakes#readme
https://www.python.org/downloads/windows/
https://github.com/mhammond/pywin32

py-generic-project Documentation, Release 1.2.dev0

If that makes more sense to you, you can change the system-wide variables instead of the user-specific ones, and
choose paths that are global for all users (like C:\usr\bin or similar).

To make zipapps available network-wide, you can use %APPDATA% to store the zipapps, so you only have to maintain
them once in case you regularly work on several machines in the same network.

2.3.2.4 Conda (Windows, Mac OS X, Linux)

Alternatively, there is also the cross-platform, Python-agnostic binary package manager Conda, with roots in the
Scientific Python community and being part of the Anaconda data processing platform.

Miniconda is a minimal distribution containing only the Conda package manager and Python. Once Miniconda is
installed, you can use the conda command to install any other packages and create environments (conda is the
equivalent of virtualenv and pip).

2.3.2.5 RyRun (Mac OS X, Linux, FreeBSD)

Yet another contender is PyRun from eGenix. It is a one file Python runtime, that combines a Python interpreter with
an almost complete Python standard library into a single easy-to-use executable of about 12 MiB in size. The selling
point is easy installation by only handling a single file, which also results in easy relocation – ideal for using it on an
USB stick for portable applications, or part of a self-contained bundle for server installations. It covers all the relevant
Python versions (2.6, 2.7, and 3.4), and comes in 32bit and 64bit flavours.

From an application installation standpoint, PyRun allows you to efficiently create isolated runtime environments that
include their own Python interpreter and standard library, i.e. are even more detached from the host setup than normal
virtualenvs.

2.3.2.6 pyenv (Simple Python Version Management)

pyenv works for Mac OS X and POSIX systems and is a simple way to obtain access to Python versions that are not
available from your system’s software repositories, and switch between them at will.

See the pyenv installation instructions for details.

2.3.3 Installation With PEX

PEX files are Python Executable ZIP files, a format that contains a full distribution of a Python application in a single
archive (just like executable JARs for Java). PEX files can be targeted at a specific platform and Python version,
but might also support multiple runtime environments. Consult the documentation of your application for further
guidance.

Installing a PEX file is as easy as downloading it from the project’s download page (e.g. Bintray or the GitHub releases
section of a project), using your browser or curl, and then just start it from where you saved it to in your file system.
On Windows, give the file a .pyz or .pyzw extension, which the Python Launcher is registered for. On POSIX
systems, chmod +x the file to make it executable.

See PEP 441 and Building Zipapps (PEP 441) for a formal description of the underlying mechanics and all the details.

2.3.4 Installing Releases From PyPI

For releases published on PyPI, you should use pip to install them (i.e. do not use easy_install anymore). It’s
common procedure to not install into /usr/local on Linux, but instead create a so-called virtualenv, which is a
runtime environment that is (by default) isolated against the host system and its packages, as well as against other

12 Chapter 2. Documentation Contents

http://conda.pydata.org/
http://conda.pydata.org/miniconda.html#miniconda
https://www.egenix.com/products/python/PyRun/
https://github.com/yyuu/pyenv
https://github.com/yyuu/pyenv#installation
https://youtu.be/NmpnGhRwsu0
https://www.python.org/dev/peps/pep-0441/
https://pypi.python.org/pypi

py-generic-project Documentation, Release 1.2.dev0

virtualenvs. This means that you don’t have to carefully manage version numbers, you can let pip install exactly
those versions an application works best with.

To create a virtualenv, go to the desired install location, and create the new environment, also giving it a name:

cd ~/.local/venvs
python3 -m venv ‹newenv›
. ‹newenv›/bin/activate
pip install -U pip setuptools # get newest tooling

The third command activates the virtualenv, which means that when you call python or pip, they run in the context
of that virtualenv.

Now all you have to do is call pip install ‹my-new-app› and it’ll get installed into that environment. If the
package provides command line tools, don’t forget to add the bin directory to your PATH – or better yet symlink those
commands into your ~/bin directory or add some definitions to ~/.bash_aliases, to make them selectively
available.

To make this even simpler, dephell (via its concept of ‘jails’) allows installing and updating with a simple one-liner.
And – at least on Linux – it also makes any exposed CLI tools immediately available in your PATH. dephell jail
is just a convenient wrapper around pip and venv.

2.3.5 Installing Directly From GitHub

In case you really need the freshest source from GitHub, there are several ways to install a setuptools-enabled
project from its repository. Be aware that this is nothing a casual user should really do, gain some experience us-
ing virtualenv and pip before trying this. The following shows different ways to get pip to download and install
the source directly, with a single command.

• Via a ZIP archive download (does not need git installed):

pip install "https://github.com/‹USER›/‹REPO-NAME›/archive/‹TAG-OR-SHA›.zip
→˓#egg=‹PKG-NAME›"

Usually, ‹TAG-OR-SHA› will be master or develop – in the GitHub web UI, you can use the branch
selector above the file listing to first select a branch, then the Download ZIP button at the bottom of the
sidebar gives you the neccessary link.

• Via git clone:

pip install "git+https://github.com/‹USER›/‹REPO-NAME›.git#egg=‹PKG-NAME›"

• Via git clone with a tag or hash:

pip install "git+https://github.com/‹USER›/‹REPO-NAME›.git@‹TAG-OR-SHA›#egg=‹PKG-
→˓NAME›"

• From a working directory you manually cloned into your file system:

pip install "‹working-directory-path›"

• The forms that use git+ or a git directory can also be done as an editable package – the difference is that the
package will end up in a top-level src directory instead of the deeply nested .../site-packages one, and
any changes to the source will be instantly visible to any process that imports it. When you plan to change the
source or otherwise need quick access to it, that makes this easy:

2.3. Installing Python Software 13

https://github.com/dephell/dephell#readme

py-generic-project Documentation, Release 1.2.dev0

pip install -e "git+....git#egg=‹PKG-NAME›"

Note that all these forms work in requirements files, which in the end are only lists of pip install arguments.

Tip: Use python3 -m pip or python -m pip instead of plain pip in case you have problems, or if you write
automation scripts for unattended installations.

The advantage of this is that you always get the ‘right’ version of pip for the given interpreter, especially when you
make that configurable and people provide ‘exotic’ Python executable paths.

2.4 Writing Sphinx Documentation

2.4.1 Overview

This is a directory of links to information and hints you need when you want to write (software) documentation using
reStructuredText and Sphinx. Using them should improve your experience as an author as well as the end result for
your readers.

Sphinx is a tool that makes it easy to create intelligent and beautiful documentation, and uses reStructuredText as
its markup language. It was originally created for the new Python documentation, and thus has excellent facilities
documenting Python projects, but is in no way limited to those.

Also visit Write the Docs, which is a place with high quality information about the art of writing documentation.

2.4.1.1 When to Use Sphinx?

Using Sphinx has several advantages over other options for writing documentation that has strong ties to the source
code. It can be maintained and versioned together with the source, which increases the likelihood that you end up with
current and correct documentation.

Sphinx was designed for that purpose – to write extensive ‘prosa’ documentation in addition to any in-source markup
most languages offer (e.g. Javadoc), and shines when it comes to cross-linking within the documentation and into
source code – for example, it’s easy to refer to identifiers in your source by their name.

For a Python project, Sphinx is the obvious choice, but there are also extensions for Java and other languages (so-called
domains). The generated output can be styled freely, and the Sphinx eco-system offers lots of documentation and code
highlighting themes.

2.4.1.2 Feature Highlights

• Output formats – HTML (including Windows HTML Help), LaTeX (for printable PDF versions), Texinfo,
manual pages, plain text.

• Extensive cross-references – Semantic markup and automatic links for functions, classes, citations, glossary
terms and similar pieces of information.

• Hierarchical structure – Easy definition of a document tree, with automatic links to siblings, parents and
children.

• Automatic indices – General index as well as a language-specific module indices.

• Code handling – Automatic highlighting using the Pygments highlighter.

14 Chapter 2. Documentation Contents

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/index.html
http://docs.writethedocs.org/

py-generic-project Documentation, Release 1.2.dev0

• Extensions – Automatic testing of code snippets, inclusion of docstrings from Python modules (API docs), and
more.

2.4.2 Introduction & Cheatsheets

• See the How-Tos section below for some quickstart advice.

• Sphinx reStructuredText primer – A brief introduction to reStructuredText (reST) concepts and syntax.

• Beautiful Docs – A collection of exemplary open source project documentation.

• Style guide for Sphinx-based documentations

2.4.3 Extensions & Tools

There are a lot of extensions, styles, themes, and so on available on the web. For example, see the reStructuredText
tool support entry on Stack Overflow, or the Awesome Sphinx bookmark list on GitHub.

You should get a reStructuredText language definition enabling syntax highlighting in your favourite editor or IDE,
see below for gedit3 support.

Extensions

• PlantUML for Sphinx allows you to add PlantUML diagrams to your documentation.

• sphinxcontrib-programoutput inserts the output of arbitrary commands into documents, helping you to keep
your command examples up to date.

Tools

• restview – A HTML viewer for reStructuredText documents that renders them on the fly.

gedit3

• reStructuredText preview and highlighting

– For Python3 and gedit 3.8

– For Python2

• gedit3 language definition for reStructuredText

2.4.4 How-Tos

2.4.4.1 Sphinx Installation and Setup

See Installing Python Software for the full story and all details, this is how to install Sphinx to your user account on a
properly configured POSIX system (including Babun or CygWin):

venv=~/.local/venvs/sphinx
mkdir -p $(dirname $venv)
python3 -m venv $venv
$venv/bin/pip install -U pip
$venv/bin/pip install sphinx sphinx-autobuild
ln -nfs -t ~/.local/bin $venv/bin/sphinx-*

For a Python project, it makes sense to add Sphinx to the development requirements of the project, and install it to
the project’s virtualenv together with other tools. This makes you independent of the machine you build on, and also
ensures that you always get the same version of Sphinx.

2.4. Writing Sphinx Documentation 15

http://sphinx-doc.org/rest.html
https://github.com/PharkMillups/beautiful-docs
https://documentation-style-guide-sphinx.readthedocs.io/
http://stackoverflow.com/questions/2746692/restructuredtext-tool-support
http://stackoverflow.com/questions/2746692/restructuredtext-tool-support
https://github.com/yoloseem/awesome-sphinxdoc
https://pypi.python.org/pypi/sphinxcontrib-plantuml
http://plantuml.sourceforge.net/
https://github.com/lunaryorn/sphinxcontrib-programoutput
https://github.com/mgedmin/restview#restview
https://github.com/bittner/gedit-reST-plugin
https://github.com/mcepl/reStPlugin
https://github.com/jhermann/ruby-slippers/blob/master/home/.local/share/gtksourceview-3.0/language-specs/restructuredtext.lang

py-generic-project Documentation, Release 1.2.dev0

Development requirements
Sphinx==2.2.2
sphinx-autobuild==0.7.1
sphinx-rtd-theme==0.4.2

2.4.4.2 Creating a Minimal Project

In your project directory, call sphinx-quickstart which will prompt you for required information. Answer the
first question for a ‘root path’ with docs, and the others according to your project’s needs. You will then find a working
minimal Sphinx project in the docs folder – git add that immediately, before you build your documentation the
first time.

To build a HTML rendering, go into docs and call make html. If all goes well, you’ll find the root page of your
documentation at docs/_build/html/index.html or docs/_build/index.html (with newer versions
of Sphinx) – just open it with your browser.

If you use the current Sphinx version, the default theme is ‘Alabaster’. Let’s change that to the default theme used on
Read the Docs, in docs/conf.py:

html_theme = 'sphinx_rtd_theme'

Call make html again and reload the page in your browser. You should see a difference.

2.4.4.3 Adding a New Chapter

To add a new chapter in its own file, create a file like docs/chapter.rst with the following content:

##############
My New Chapter
##############

Then add that file to the toctree of your index.rst file:

.. toctree::
:maxdepth: 2

chapter

Entries in a toctree are just filenames, but relative to the containing file, and without extension, so we end up with just
chapter here.

Rebuild the docs and “My New Chapter” will be added to the sidebar.

See Sections in the Sphinx documentation regarding the markup for different heading levels.

2.4.4.4 Publishing Your Document

If you want to publish documentation for a project on GitHub, the easiest solution is Read the Docs (RTD), which is
a hosting service that builds your Sphinx documentation on-the-fly based on commit triggers. That means you don’t
have to generate and upload anything, just commit any changes and they’ll be published soon thereafter.

RTD also knows about versions (as long as you maintain them properly) and thus offers both the latest documentation
from source as well as previously released versions. As with all these services, you log in with OAuth2 and just click
on your project repository to activate building – it’s very easy.

16 Chapter 2. Documentation Contents

https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html#sections
https://readthedocs.org/

py-generic-project Documentation, Release 1.2.dev0

2.4.4.5 Automatic Preview

The best preview solution is sphinx-autobuild, which is a drop-in replacement for the sphine-build command. It
starts a web-server bound to localhost that makes the documentation available, and also a watchdog that triggers
a build as soon as you save any changes in your editor. Since only the part of the documentation that actually changed
is rebuilt, this is usually very quick and you get a near-instant live-reload in your browser view via a Websocket
connection.

If you use the rituals automation tasks library, starting sphinx-autobuild is as easy as. . .

invoke docs --watchdog --browse

This launches the daemon and waits for a complete startup, then opens a browser tab with the rendered documentation.
Try to touch docs/index.rst and watch the activity indicator in your browser – or take a look into the docs/
watchdog.log file.

2.4.4.6 Converting from Markdown to reST

If you have existing Markdown files you want to integrate into your documentation, the pandoc tool provides an easy
way to convert into reST-style markup. To make it available on Debian-type system, just install the package of the
same name.

Then a conversion can be done as follows:

pandoc --from markdown --to rst -o "‹file›.rst" "‹file›.md"

2.4.4.7 Adding a Custom Pygments Lexer to Sphinx

In order for Sphinx to load and recognize a custom lexer, two things are needed:

1. Add the package name of the lexer to the extensions list in conf.py. Of course, that package has to be
importable, either by using a virtualenv or manipulating sys.path.

2. Give your lexer package a Setuptools pygments.lexers entry point.

Then use it in a code-block as if it were a built-in. That’s all.

2.4.4.8 Automatic Click CLI References

If you implement CLI tools using the Click framework, you can generate a reference as part of your Sphinx documen-
taton using the sphinx-click extension, covering all the command line options and arguments.

The generated text is based on the information contained in the --help output, just formatted more prettily. Unlike
manually written docs, it’s always up to date by definition. All you need to do is adding sphinx-click to your
requirements and the Sphinx configuration, and then create a new document file looking like this:

Complete CLI Reference

This is a full reference of the :command:`foobar` command,
with the same information as you get from using :option:`--help`.
It is generated from source code and thus always up to date.
See :doc:`usage` for a more detailed description.

(continues on next page)

2.4. Writing Sphinx Documentation 17

https://pypi.python.org/pypi/sphinx-autobuild
https://rituals.readthedocs.io/
https://click.palletsprojects.com/
https://github.com/click-contrib/sphinx-click

py-generic-project Documentation, Release 1.2.dev0

Fig. 3: Example Rendering Generated by sphinx-click

(continued from previous page)

.. contents:: Available Commands
:local:

.. click:: foobar.__main__:cli
:prog: foobar
:show-nested:

Add the new chapter to your toc-tree in docs/index.rst. Then there are only a few more changes needed in
your project setup.

docs/conf.py

...
extensions = [

...
'sphinx_click.ext',

]
...

docs/requirements.txt

Requirements to build docs on RTD
sphinx-click

2.4.4.9 Automatic Click Manual Pages

A similar tool to sphinx-click is click-man, which is especially useful if you deploy click-based commands as OS
packages.

18 Chapter 2. Documentation Contents

https://github.com/click-contrib/click-man

py-generic-project Documentation, Release 1.2.dev0

2.5 Software License

Since the files contained in the {{cookiecutter.repo_name}} archetype itself will comprise the foundation of
your project, they’re unlicensed using the “Creative Commons Zero v1.0 Universal” license. All other files outside the
{{cookiecutter.repo_name}} directory are MIT-licensed – this effectively means you only have to attribute
this project if you re-use all or parts of the contained templating mechanics and documentation.

2.5.1 The MIT License (MIT)

Copyright (c) 2015 Jürgen Hermann

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

2.5.2 CC0 1.0 Universal

Statement of Purpose

The laws of most jurisdictions throughout the world automatically confer exclusive Copyright and Related Rights
(defined below) upon the creator and subsequent owner(s) (each and all, an “owner”) of an original work of authorship
and/or a database (each, a “Work”).

Certain owners wish to permanently relinquish those rights to a Work for the purpose of contributing to a commons
of creative, cultural and scientific works (“Commons”) that the public can reliably and without fear of later claims of
infringement build upon, modify, incorporate in other works, reuse and redistribute as freely as possible in any form
whatsoever and for any purposes, including without limitation commercial purposes. These owners may contribute
to the Commons to promote the ideal of a free culture and the further production of creative, cultural and scientific
works, or to gain reputation or greater distribution for their Work in part through the use and efforts of others.

For these and/or other purposes and motivations, and without any expectation of additional consideration or compen-
sation, the person associating CC0 with a Work (the “Affirmer”), to the extent that he or she is an owner of Copyright
and Related Rights in the Work, voluntarily elects to apply CC0 to the Work and publicly distribute the Work under
its terms, with knowledge of his or her Copyright and Related Rights in the Work and the meaning and intended legal
effect of CC0 on those rights.

1. Copyright and Related Rights. A Work made available under CC0 may be protected by copyright and related or
neighboring rights (“Copyright and Related Rights”). Copyright and Related Rights include, but are not limited
to, the following:

i. the right to reproduce, adapt, distribute, perform, display, communicate, and translate a Work;

ii. moral rights retained by the original author(s) and/or performer(s);

iii. publicity and privacy rights pertaining to a person’s image or likeness depicted in a Work;

2.5. Software License 19

py-generic-project Documentation, Release 1.2.dev0

iv. rights protecting against unfair competition in regards to a Work, subject to the limitations in
paragraph 4(a), below;

v. rights protecting the extraction, dissemination, use and reuse of data in a Work;

vi. database rights (such as those arising under Directive 96/9/EC of the European Parliament and
of the Council of 11 March 1996 on the legal protection of databases, and under any national imple-
mentation thereof, including any amended or successor version of such directive); and

vii. other similar, equivalent or corresponding rights throughout the world based on applicable law
or treaty, and any national implementations thereof.

2. Waiver. To the greatest extent permitted by, but not in contravention of, applicable law, Affirmer hereby overtly,
fully, permanently, irrevocably and unconditionally waives, abandons, and surrenders all of Affirmer’s Copyright
and Related Rights and associated claims and causes of action, whether now known or unknown (including
existing as well as future claims and causes of action), in the Work (i) in all territories worldwide, (ii) for the
maximum duration provided by applicable law or treaty (including future time extensions), (iii) in any current or
future medium and for any number of copies, and (iv) for any purpose whatsoever, including without limitation
commercial, advertising or promotional purposes (the “Waiver”). Affirmer makes the Waiver for the benefit
of each member of the public at large and to the detriment of Affirmer’s heirs and successors, fully intending
that such Waiver shall not be subject to revocation, rescission, cancellation, termination, or any other legal or
equitable action to disrupt the quiet enjoyment of the Work by the public as contemplated by Affirmer’s express
Statement of Purpose.

3. Public License Fallback. Should any part of the Waiver for any reason be judged legally invalid or ineffective
under applicable law, then the Waiver shall be preserved to the maximum extent permitted taking into account
Affirmer’s express Statement of Purpose. In addition, to the extent the Waiver is so judged Affirmer hereby
grants to each affected person a royalty-free, non transferable, non sublicensable, non exclusive, irrevocable
and unconditional license to exercise Affirmer’s Copyright and Related Rights in the Work (i) in all territories
worldwide, (ii) for the maximum duration provided by applicable law or treaty (including future time exten-
sions), (iii) in any current or future medium and for any number of copies, and (iv) for any purpose whatsoever,
including without limitation commercial, advertising or promotional purposes (the “License”). The License
shall be deemed effective as of the date CC0 was applied by Affirmer to the Work. Should any part of the
License for any reason be judged legally invalid or ineffective under applicable law, such partial invalidity or
ineffectiveness shall not invalidate the remainder of the License, and in such case Affirmer hereby affirms that
he or she will not (i) exercise any of his or her remaining Copyright and Related Rights in the Work or (ii) assert
any associated claims and causes of action with respect to the Work, in either case contrary to Affirmer’s express
Statement of Purpose.

4. Limitations and Disclaimers.

a. No trademark or patent rights held by Affirmer are waived, abandoned, surrendered, licensed or
otherwise affected by this document.

b. Affirmer offers the Work as-is and makes no representations or warranties of any kind concerning
the Work, express, implied, statutory or otherwise, including without limitation warranties of title,
merchantability, fitness for a particular purpose, non infringement, or the absence of latent or other
defects, accuracy, or the present or absence of errors, whether or not discoverable, all to the greatest
extent permissible under applicable law.

c. Affirmer disclaims responsibility for clearing rights of other persons that may apply to the Work or
any use thereof, including without limitation any person’s Copyright and Related Rights in the Work.
Further, Affirmer disclaims responsibility for obtaining any necessary consents, permissions or other
rights required for any use of the Work.

d. Affirmer understands and acknowledges that Creative Commons is not a party to this document
and has no duty or obligation with respect to this CC0 or use of the Work.

For more information, please see <http://creativecommons.org/publicdomain/zero/1.0/>.

20 Chapter 2. Documentation Contents

http://creativecommons.org/publicdomain/zero/1.0/

CHAPTER 3

References

3.1 Tools

• Cookiecutter

• PyInvoke

• pytest

• tox

• Pylint

• pypa/setuptools

• pypa/sampleproject

• twine

• autoenv

• bpython

• yolk3k

3.2 Packages

• rituals

• click

21

https://cookiecutter.readthedocs.io/en/latest/
http://www.pyinvoke.org/
http://pytest.org/latest/contents.html
https://tox.readthedocs.io/en/latest/
http://docs.pylint.org/
https://bitbucket.org/pypa/setuptools
https://github.com/pypa/sampleproject
https://github.com/pypa/twine#twine
https://github.com/kennethreitz/autoenv
http://docs.bpython-interpreter.org/
https://github.com/myint/yolk#yolk
https://jhermann.github.io/rituals
http://click.pocoo.org/

py-generic-project Documentation, Release 1.2.dev0

22 Chapter 3. References

CHAPTER 4

Indices and Tables

• genindex

• modindex

• search

23

	Features
	Documentation Contents
	Using the “py-generic-project” Template
	Preparations
	Project Creation
	Requirements Handling
	Feature Toggles

	Packaging Python Software
	Packaging PyPI Releases
	Building with setuptools
	Packaging with wheel
	Uploading with twine

	Building Zipapps (PEP 441)
	Packaging Python EXecutables (PEX)

	Installing Python Software
	TL;DR
	Installing Python
	POSIX (Linux, BSD, …)
	Windows (python.org)
	Enabling Easy Zipapp Installs on Windows
	Conda (Windows, Mac OS X, Linux)
	RyRun (Mac OS X, Linux, FreeBSD)
	pyenv (Simple Python Version Management)

	Installation With PEX
	Installing Releases From PyPI
	Installing Directly From GitHub

	Writing Sphinx Documentation
	Overview
	When to Use Sphinx?
	Feature Highlights

	Introduction & Cheatsheets
	Extensions & Tools
	How-Tos
	Sphinx Installation and Setup
	Creating a Minimal Project
	Adding a New Chapter
	Publishing Your Document
	Automatic Preview
	Converting from Markdown to reST
	Adding a Custom Pygments Lexer to Sphinx
	Automatic Click CLI References
	Automatic Click Manual Pages

	Software License
	The MIT License (MIT)
	CC0 1.0 Universal

	References
	Tools
	Packages

	Indices and Tables

